Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
J Biol Chem ; 296: 100544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737022

RESUMO

Dopamine (DA) exerts well-known functions in the brain as a neurotransmitter. In addition, it plays important physiological roles in peripheral organs, but it is largely unknown how and where peripheral DA is synthesized and regulated. Catecholamines in peripheral tissues are either produced within the tissue itself and/or derived from sympathetic neurons, which release neurotransmitters for uptake by peripheral tissues. To evaluate DA-producing ability of each peripheral tissue, we generated conditional KO mice (cKO mice) in which the tyrosine hydroxylase (TH) gene is ablated in the sympathoadrenal system, thus eliminating sympathetic neurons as a DA source. We then examined the alterations in the noradrenaline (NA), DA, and 3,4-dihydroxyphenylalanine (DOPA) contents in peripheral organs and performed immunohistochemical analyses of TH-expressing cells. In the heart and pancreas of cKO mice, both the TH protein and NA levels were significantly decreased, and the DA contents were decreased in parallel with NA contents, indicating that the DA supply originated from sympathetic neurons. We found TH-immunoreactive cells in the stomach and lung, where the TH protein showed a decreasing trend, but the DA levels were not decreased in cKO mice. Moreover, we found a significant correlation between the DA content in the kidney and the plasma DOPA concentration, suggesting that the kidney takes up DOPA from blood to make DA. The aforementioned data unravel differences in the DA biosynthetic pathway among tissues and support the role of sympathetic neurons as a DA supplier.


Assuntos
Glândulas Suprarrenais/metabolismo , Vias Biossintéticas , Catecolaminas/metabolismo , Dopamina/biossíntese , Neurônios/metabolismo , Sistema Nervoso Simpático/metabolismo , Tirosina 3-Mono-Oxigenase/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos
2.
J Neurosci ; 40(44): 8478-8490, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998974

RESUMO

Meso-diencephalic dopaminergic neurons are known to modulate locomotor behaviors through their ascending projections to the basal ganglia, which in turn project to the mesencephalic locomotor region, known to control locomotion in vertebrates. In addition to their ascending projections, dopaminergic neurons were found to increase locomotor movements through direct descending projections to the mesencephalic locomotor region and spinal cord. Intriguingly, fibers expressing tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, were also observed around reticulospinal neurons of lampreys. We now examined the origin and the role of this innervation. Using immunofluorescence and tracing experiments, we found that fibers positive for dopamine innervate reticulospinal neurons in the four reticular nuclei of lampreys. We identified the dopaminergic source using tracer injections in reticular nuclei, which retrogradely labeled dopaminergic neurons in a caudal diencephalic nucleus (posterior tuberculum [PT]). Using voltammetry in brain preparations isolated in vitro, we found that PT stimulation evoked dopamine release in all four reticular nuclei, but not in the spinal cord. In semi-intact preparations where the brain is accessible and the body moves, PT stimulation evoked swimming, and injection of a D1 receptor antagonist within the middle rhombencephalic reticular nucleus was sufficient to decrease reticulospinal activity and PT-evoked swimming. Our study reveals that dopaminergic neurons have access to command neurons that integrate sensory and descending inputs to activate spinal locomotor neurons. As such, our findings strengthen the idea that dopamine can modulate locomotor behavior both via ascending projections to the basal ganglia and through descending projections to brainstem motor circuits.SIGNIFICANCE STATEMENT Meso-diencephalic dopaminergic neurons play a key role in modulating locomotion by releasing dopamine in the basal ganglia, spinal networks, and the mesencephalic locomotor region, a brainstem region that controls locomotion in a graded fashion. Here, we report in lampreys that dopaminergic neurons release dopamine in the four reticular nuclei where reticulospinal neurons are located. Reticulospinal neurons integrate sensory and descending suprareticular inputs to control spinal interneurons and motoneurons. By directly modulating the activity of reticulospinal neurons, meso-diencephalic dopaminergic neurons control the very last instructions sent by the brain to spinal locomotor circuits. Our study reports on a new direct descending dopaminergic projection to reticulospinal neurons that modulates locomotor behavior.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Locomoção/fisiologia , Formação Reticular/fisiologia , Medula Espinal/fisiologia , Animais , Fenômenos Biomecânicos , Antagonistas de Dopamina/farmacologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Lampreias , Fibras Nervosas/fisiologia , Receptores de Dopamina D1/antagonistas & inibidores , Natação , Tirosina 3-Mono-Oxigenase/fisiologia
3.
J Comp Neurol ; 528(16): 2639-2653, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291742

RESUMO

Astyanax mexicanus is a teleost fish that is in the process of allopatric speciation. Ancestral Astyanax are found in surface rivers and derived blind forms are found in cave systems. Adaptation to life in nutrient poor caves without predation includes the evolution of enhanced food seeking behaviors and loss of defensive responses. These behavioral adaptations may be mediated by changes in catecholaminergic control systems in the brain. We examined the distribution of tyrosine hydroxylase, a conserved precursor for the synthesis of the catecholamines dopamine and noradrenaline, in the brains of surface and cave Astyanax using immunohistochemistry. We found differences in tyrosine hydroxylase staining in regions that are associated with nonvisual sensory perception, motor control, endocrine release, and attention. These differences included significant increases in the diameters of tyrosine hydroxylase immunoreactive soma in cave Astyanax in the olfactory bulb, basal telencephalon, preoptic nuclei, ventral thalamus, posterior tuberculum, and locus coeruleus. These increases in modulation by dopamine and noradrenaline likely indicate changes in behavioral control that underlie adaptations to the cave environment.


Assuntos
Adaptação Fisiológica , Encéfalo/metabolismo , Catecolaminas/metabolismo , Cavernas , Characidae/fisiologia , Transdução de Sinais , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Catecolaminas/fisiologia , Dopamina/metabolismo , Norepinefrina/metabolismo , Tirosina 3-Mono-Oxigenase/análise , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/fisiologia
4.
Mol Psychiatry ; 24(11): 1668-1684, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29728703

RESUMO

The diurnal regulation of dopamine is important for normal physiology and diseases such as addiction. Here we find a novel role for the CLOCK protein to antagonize CREB-mediated transcriptional activity at the tyrosine hydroxylase (TH) promoter, which is mediated by the interaction with the metabolic sensing protein, Sirtuin 1 (SIRT1). Additionally, we demonstrate that the transcriptional activity of TH is modulated by the cellular redox state, and daily rhythms of redox balance in the ventral tegmental area (VTA), along with TH transcription, are highly disrupted following chronic cocaine administration. Furthermore, CLOCK and SIRT1 are important for regulating cocaine reward and dopaminergic (DAergic) activity, with interesting differences depending on whether DAergic activity is in a heightened state and if there is a functional CLOCK protein. Taken together, we find that rhythms in cellular metabolism and circadian proteins work together to regulate dopamine synthesis and the reward value for drugs of abuse.


Assuntos
Ritmo Circadiano/fisiologia , Sirtuína 1/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Encéfalo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Cocaína/metabolismo , Condicionamento Operante/fisiologia , Condicionamento Psicológico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Oxirredução , Recompensa , Sirtuína 1/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia , Área Tegmentar Ventral/metabolismo
5.
J Appl Physiol (1985) ; 123(6): 1721-1729, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28883047

RESUMO

The study evaluates whether the intrinsic capacity for physical exercise influences dopamine neuroplasticity induced by physical training. Male rats were submitted to three progressive tests until fatigue. Based on the maximal time of exercise (TE), rats were considered as low performance (LP), standard performance (SP) or high performance (HP) to exercise. Eight animals from each group (LP, SP, and HP) were randomly subdivided in sedentary (SED) or trained (TR). Physical training was performed for 6 wk. After that, concentrations of dopamine (DA), serotonin (5-HT), and their metabolites and mRNA levels of D1 receptor ( Drd1), D2 receptor ( Drd2), dopamine transporter ( Dat), tyrosine hydroxylase ( Th), glia cell line neurotrophic factor ( Gdnf), and brain-derived neurotrophic factor ( Bdnf) were determined in the caudate-putamen (CPu). TE was increased with training in all performance groups. However, the relative increase was markedly higher in LP rats, and this was associated with a training-induced increase in dopaminergic activity in the CPu, which was determined by the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio. An opposite monoamine response was found in HP-TR rats, in which physical training decreased the DOPAC/DA ratio in the CPu. Moreover, LP-SED rats displayed higher levels of Drd2 in the CPu compared with the other SED groups, and this higher expression was decreased by physical training. Physical training also decreased Dat and increased Gdnf in the CPu of LP rats. Physical training decreased Bdnf in the CPu only in HP rats. Thus, we provide evidence that the intrinsic capacity to exercise affects the neuroplasticity of the dopaminergic system in response to physical training. NEW & NOTEWORTHY The findings reported reveal that dopaminergic neuroplasticity in caudate-putamen induced by physical training is influenced by the intrinsic capacity to exercise in rats. To evaluate the dopaminergic neuroplasticity, we analyzed mRNA levels of D1 receptor, D2 receptor, dopamine transporter, tyrosine hydroxylase, glia cell line neurotrophic factor, and brain-derived neurotrophic factor as well as concentrations of dopamine, serotonin, and their metabolites. These results expand our knowledge about the interrelationship between genetic background, physical training, and dopaminergic neuroplasticity.


Assuntos
Dopamina/fisiologia , Plasticidade Neuronal , Condicionamento Físico Animal/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/análise , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Masculino , Neostriado/fisiologia , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/fisiologia
6.
Exp Gerontol ; 85: 59-70, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664582

RESUMO

The medial prefrontal cortex (mPFC) has been identified as a critical center for working and long-term memory. In this study, we have examined the expression of neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) in mPFC interneurons and the density of the mPFC cholinergic and dopaminergic innervation in cognitively-impaired aged Wistar rats. We also tested the possibility that the potential age-related changes might rely on insufficient neurotrophic support. The total number of NPY- and VIP-immunoreactive neurons and the density of vesicular acetylcholine transporter (VAChT)- and tyrosine hydroxylase (TH)-immunoreactive varicosities were estimated using stereological methods. The number of NPY-immunoreactive neurons was significantly reduced in aged rats, whereas the number of VIP-immunoreactive neurons was unaltered. The decreased expression of NPY was fully reversed by intracerebroventricular administration of nerve growth factor. No differences in the density of VAChT- and TH-immunoreactive varicosities were found among all groups. Our results indicate that the reduced expression of NPY in the mPFC of aged rats can be ascribed to the age-associated loss of neurotrophic support, and raise the possibility that these changes might contribute for the cognitive decline that occurs during non-pathological aging.


Assuntos
Envelhecimento/fisiologia , Interneurônios/fisiologia , Memória de Longo Prazo/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Córtex Pré-Frontal/patologia , Memória Espacial/efeitos dos fármacos , Animais , Imuno-Histoquímica , Masculino , Neuropeptídeo Y/fisiologia , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia
7.
Nat Neurosci ; 19(10): 1341-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548245

RESUMO

Energy homeostasis, food intake, and body weight are regulated by specific brain circuits. Here we introduce an unexpected neuron, the tyrosine hydroxylase (TH) neuron of the arcuate nucleus (ARC), that we show makes an orexigenic contribution. Optogenetic stimulation of mouse ARC TH neurons increased food intake; attenuating transmitter release reduced body weight. Optogenetic stimulation of ARC TH cells inhibited pro-opiomelanocortin (POMC) neurons through synaptic mechanisms. ARC TH cells project to the hypothalamic paraventricular nucleus; optogenetic stimulation of ARC TH axons inhibited paraventricular nucleus neurons by dopamine and GABA co-release. Dopamine excited orexigenic neurons that synthesize agouti-related peptide and neuropeptide Y but inhibited anorexigenic neurons that synthesize POMC, as determined by whole cell recording. Food deprivation increased c-fos expression and spike frequency in ARC TH neurons. The gut peptide ghrelin evoked direct excitatory effects, suggesting these neurons monitor metabolic cues. Together these data support the view that ARC TH cells play an unrecognized and influential positive role in energy homeostasis.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Homeostase , Neurônios/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dopamina/metabolismo , Dopamina/fisiologia , Feminino , Grelina/fisiologia , Masculino , Camundongos , Inibição Neural/fisiologia , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Pró-Opiomelanocortina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Exp Biol Med (Maywood) ; 241(18): 2094-2103, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27444150

RESUMO

Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4+ T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4+ T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4+ T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4+ T cells of CIA mice. In splenic CD4+ T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4+ T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4+ T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4+ T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.


Assuntos
Artrite Experimental/fisiopatologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T Reguladores/fisiologia , Células Th17/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Gene ; 567(2): 138-45, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25958343

RESUMO

In insects, pigment patterns are formed by melanin, ommochromes, and pteridines. Here, the effects of pteridine synthesis on melanin formation were studied using 4th instar larvae of a wild-type silkworm strain, dazao (Bombyx mori), with normal color and markings. Results from injected larvae and in vitro integument culture indicated that decreased activity of guanosine triphosphate cyclohydrolase I (GTP-CH I, a rate-limiting enzyme for pteridine synthesis), lowers BH4 (6R-l-erythro-5,6,7,8-tetrahydrobiopterin, a production correlated with GTP-CH I activity) levels and eliminates markings and coloration. The conversion of phenylalanine and tyrosine to melanin was prevented when GTP-CH I was inhibited. When BH4 was added, phenylalanine was converted to tyrosine, and the tyrosine concentration increased. Tyrosine was then converted to melanin to create normal markings and coloration. Decreasing GTP-CH I activity did not affect L-DOPA (3,4-l-dihydroxyphenylalanine). GTP-CH I affected melanin synthesis by generating the BH4 used in two key reaction steps: (1) conversion of phenylalanine to tyrosine by PAH (phenylalanine hydroxylase) and (2) conversion of tyrosine to L-DOPA by TH (tyrosine hydroxylase). Expression profiles of BmGTPCH Ia, BmGTPCH Ib, BmTH, and BmPAH in the integument were consistent with the current findings.


Assuntos
Bombyx/enzimologia , GTP Cicloidrolase/fisiologia , Proteínas de Insetos/fisiologia , Melaninas/biossíntese , Fenilalanina Hidroxilase/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia , Animais , Vias Biossintéticas , Bombyx/crescimento & desenvolvimento , Guanosina Trifosfato , Muda , Pigmentação da Pele , Técnicas de Cultura de Tecidos
10.
J Neural Transm (Vienna) ; 121(12): 1493-505, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24781752

RESUMO

In Parkinson's disease (PD), destruction of noradrenergic neurons in the locus coeruleus (LC) may precede damage to nigral cells and subsequently exaggerate dopaminergic cell loss. We examine if destruction of the locus coeruleus with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) alters dopaminergic cell loss in substantia nigra (SN) initiated by lipopolysaccharide (LPS) in the rat through an effect on glial cell activation. In rats, a single intraperitoneal dose of DSP-4 administered 8 days previously, caused a marked loss of tyrosine hydroxylase positive neurons in LC but no change in dopaminergic cell number in SN. Unilateral nigral LPS administration resulted in marked dopaminergic cell death with reactive microgliosis associated with enhanced p47 phox in OX-6 and OX-42 positive microglia. There was proliferation of inducible nitric oxide synthase (iNOS)-positive cells, formation of 3-nitrotyrosine (3-NT) and proliferation of astrocytes that expressed glial cell line-derived neurotrophic factor (GDNF). Following combined DSP-4 treatment and subsequent administration of LPS, unexpectedly, no further loss of tyrosine hydroxylase (TH)-immunoreactivity (-ir) occurred in the SN compared to the effects of LPS alone. However, there was a marked alteration in the morphology of microglial cell and a reduction of 3-NT- and iNOS-ir was evident. Expression of p47 phox was downregulated in microglia but up-regulated in TH-ir neurons. No further change in GFAP-ir was observed compared to that produced by DSP-4 alone or LPS alone, but the expression of GDNF was markedly reduced. This study suggests that in contrast to previous reports, prior LC damage does not influence subsequent nigral dopaminergic cell degeneration induced by LPS. Rather it appears to attenuate the microglial response thought to contribute to disease progression in PD.


Assuntos
Neurônios Adrenérgicos/fisiologia , Encefalite/induzido quimicamente , Encefalite/patologia , Lipopolissacarídeos/toxicidade , Locus Cerúleo/citologia , Substância Negra/patologia , Adrenérgicos/toxicidade , Neurônios Adrenérgicos/efeitos dos fármacos , Animais , Benzilaminas/toxicidade , Antígeno CD11b/metabolismo , Contagem de Células , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Locus Cerúleo/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/fisiologia
11.
J Neuroendocrinol ; 26(6): 400-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24750502

RESUMO

Dopamine (DA) inhibits, whereas gonadotrophin-releasing hormone (GnRH) stimulates, luteinisiing (LH) cells in the pituitary of some but not all teleosts. A reduction in the hypophysiotropic dopaminergic tone is necessary for the stimulatory effect of GnRH on LH cells. Neuropeptide Y (NPY) has emerged as one of the potent, endogenous agent that modulates LH secretion directly or indirectly via GnRH. Involvement of NPY in the regulation of hypophysiotropic DA neurones, however, is not known, but there is good evidence suggesting an interaction in the mammalian hypothalamus. DA neurones, identified by tyrosine hydroxylase (TH)-immunoreactivity, were observed widely throughout the brain of the Indian major carp, Cirrhinus cirrhosus. The granule cells and ganglion cells of terminal nerve in the olfactory bulb, and cells in ventral telencephalon and preoptic area (POA) showed conspicuous TH immunoreactivity. In the POA, the nucleus preopticus periventricularis (NPP), divisible into anterior (NPPa) and posterior (NPPp) components, showed prominent TH-immunoreactivity. The majority of TH neurones in NPPa showed axonal extensions to the pituitary and were closely associated with LH cells. The NPPa also appeared to be the site for intense interaction between NPY and DA because it contains a rich network of NPY fibres and few immunoreactive cells. Approximately 89.7 ± 1.5% TH neurones in NPPa were contacted by NPY fibres. Superfused POA slices treated with a NPY Y2 -receptor agonist, NPY 13-36 resulted in a significant (P < 0.001) reduction in TH-immunoreactivity in NPPa. TH neurones in NPPa did not respond to NPY Y1 -receptor agonist, [Leu(31) , Pro(34) ] Neuropeptide Y treatment. We suggest that, by inhibiting DAergic neurones in NPPa via Y2 -receptors, NPY may contribute to the up-regulation of the GnRH-LH cells axis. The microcircuitry of DA and NPY and their interaction in NPPa might be a crucial component in the central regulation of LH secretion in the teleosts.


Assuntos
Carpas/fisiologia , Neuropeptídeo Y/fisiologia , Bulbo Olfatório/enzimologia , Hipófise/enzimologia , Área Pré-Óptica/fisiologia , Prosencéfalo/enzimologia , Tirosina 3-Mono-Oxigenase/fisiologia , Animais , Feminino , Telencéfalo/enzimologia
12.
Gen Comp Endocrinol ; 197: 18-25, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24315863

RESUMO

Tyrosine hydroxylase (Th) is the rate-limiting enzyme for catecholamine (CA) biosynthesis and is considered to be a marker for CA-ergic neurons, which regulate the levels of gonadotropin-releasing hormone in brain and gonadotropins in the pituitary. In the present study, we cloned full-length cDNA of Th from the catfish brain and evaluated its expression pattern in the male and female brain during early development and after sex-steroid analogues treatment using quantitative real-time PCR. We measured the CA levels to compare our results on Th. Cloned Th from catfish brain is 1.591 kb, which encodes a putative protein of 458 amino acid residues and showed high homology with other teleosts. The tissue distribution of Th revealed ubiquitous expression in all the tissues analyzed with maximum expression in male and female brain. Copy number analysis showed two-fold more transcript abundance in the female brain when compared with the male brain. A differential expression pattern of Th was observed in which the mRNA levels were significantly higher in females compared with males, during early brain development. CAs, l-3,4-dihydroxyphenylalanine, dopamine, and norepinephrine levels measured using high-performance liquid chromatography with electrochemical detection in the developing male and female brain confirmed the prominence of the CA-ergic system in the female brain. Sex-steroid analogue treatment using methyltestosterone and ethinylestradiol confirmed our findings of the differential expression of Th related to CA levels.


Assuntos
Encéfalo/embriologia , Catecolaminas/biossíntese , Peixes-Gato/genética , Desenvolvimento Sexual/genética , Tirosina 3-Mono-Oxigenase/genética , Sequência de Aminoácidos , Animais , Encéfalo/fisiologia , Catecolaminas/metabolismo , Peixes-Gato/metabolismo , DNA Complementar/genética , Dopamina/metabolismo , Etinilestradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisário/embriologia , Sistema Hipotálamo-Hipofisário/fisiologia , Levodopa/metabolismo , Masculino , Metiltestosterona/farmacologia , Dados de Sequência Molecular , Norepinefrina/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Desenvolvimento Sexual/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia
13.
Neurosci Lett ; 559: 39-43, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24275212

RESUMO

Evidence has shown that attempted suicide in psychiatric disorders is a complex interplay of genes and environment. Noradrenergic dysfunction due to abnormalities in the tyrosine hydroxylase (TH) gene has been implicated in the pathogenesis of suicidal behavior in mood disorders. However, suicide is a leading cause of mortality in schizophrenia too. Recent evidence suggests that TH gene variants may also increase the risk of suicide attempts in schizophrenia patients, although the interaction with established clinical risk factors is unclear. This study aimed to identify TH gene variants conferring risk for suicide attempt in schizophrenia while accounting for the interaction between this gene and clinical risk factors. We performed analysis on four TH SNPs (rs11564717, rs11042950, rs2070762, rs689) and the common TCAT repeat (UniSTS:240639) for 234 schizophrenia patients (51 suicide attempters and 183 non-attempters). Clinical risk factors and ethnic stratification were included as covariates. Single marker analysis identified the SNP rs11564717 (p=0.042) and the TCAT(6) (p=0.004) as risk variants for suicide attempt. We also identified the haplotype A-A-A-G as a risk factor for suicide attempt (p=0.0025). In conclusion, our findings suggest that TH polymorphisms may contribute to the risk of attempted suicide in schizophrenia even after accounting for established clinical risk factors and ethnic stratification. Further larger scale studies are needed to confirm these findings and to understand the mechanisms underlying the role of TH gene variants in suicide attempt in schizophrenia.


Assuntos
Variação Genética/genética , Esquizofrenia/enzimologia , Esquizofrenia/genética , Psicologia do Esquizofrênico , Tentativa de Suicídio/psicologia , Tirosina 3-Mono-Oxigenase/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tirosina 3-Mono-Oxigenase/fisiologia
14.
J Neurochem ; 128(4): 547-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117713

RESUMO

Stress activates selected neuronal systems in the brain and this leads to activation of a range of effector systems. Our aim was to investigate some of the relationships between these systems under basal conditions and over a 40-min period in response to footshock stress. Specifically, we investigated catecholaminergic neurons in the locus coeruleus (LC), ventral tegmental area and medial prefrontal cortex (mPFC) in the brain, by measuring tyrosine hydroxylase (TH) protein, TH phosphorylation and TH activation. We also measured the effector responses by measuring plasma adrenocorticotrophic hormone, corticosterone, glucose and body temperature as well as activation of adrenal medulla protein kinases, TH protein, TH phosphorylation and TH activation. The LC, ventral tegmental area and adrenal medulla all had higher basal levels of Ser19 phosphorylation and lower basal levels of Ser31 phosphorylation than the mPFC, presumably because of their cell body versus nerve terminal location, while the adrenal medulla had the highest basal levels of Ser40 phosphorylation. Ser31 phosphorylation was increased in the LC at 20 and 40 min and in the mPFC at 40 min; TH activity was increased at 40 min in both tissues. There were significant increases in body temperature between 10 and 40 min, as well as increases in plasma adrenocorticotropic hormone at 20 min and corticosterone and glucose at 20 and 40 min. The adrenal medulla extracellular signal-regulated kinase 2 was increased between 10 and 40 min and Ser31 phosphorylation was increased at 20 min and 40 min. Protein kinase A and Ser40 phosphorylation were increased only at 40 min. TH activity was increased between 20 and 40 min. TH protein and Ser19 phosphorylation levels were not altered in any of the brain regions or adrenal medulla over the first 40 min. These findings indicate that acute footshock stress leads to activation of TH in the LC, pre-synaptic terminals in the mPFC and adrenal medullary chromaffin cells, as well as changes in activity of the hypothalamic-pituitary-adrenal axis.


Assuntos
Medula Suprarrenal/patologia , Encéfalo/patologia , Eletrochoque , Estresse Psicológico/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Medula Suprarrenal/enzimologia , Hormônio Adrenocorticotrópico/sangue , Animais , Glicemia/análise , Western Blotting , Temperatura Corporal , Encéfalo/enzimologia , Corticosterona/sangue , Ativação Enzimática/fisiologia , Locus Cerúleo/metabolismo , Masculino , Fosforilação , Córtex Pré-Frontal/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/fisiologia , Área Tegmentar Ventral/metabolismo
15.
Neuron ; 80(4): 1039-53, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24267654

RESUMO

Lateral habenula (LHb) neurons convey aversive and negative reward conditions through potent indirect inhibition of ventral tegmental area (VTA) dopaminergic neurons. Although VTA dopaminergic neurons reciprocally project to the LHb, the electrophysiological properties and the behavioral consequences associated with selective manipulations of this circuit are unknown. Here, we identify an inhibitory input to the LHb arising from a unique population of VTA neurons expressing dopaminergic markers. Optogenetic activation of this circuit resulted in no detectable dopamine release in LHb brain slices. Instead, stimulation produced GABA-mediated inhibitory synaptic transmission, which suppressed the firing of postsynaptic LHb neurons in brain slices and increased the spontaneous firing rate of VTA dopaminergic neurons in vivo. Furthermore, in vivo activation of this pathway produced reward-related phenotypes that were dependent on intra-LHb GABAA receptor signaling. These results suggest that noncanonical inhibitory signaling by these hybrid dopaminergic-GABAergic neurons act to suppress LHb output under rewarding conditions.


Assuntos
Habenula/fisiologia , Recompensa , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Animais , Axônios/fisiologia , Comportamento Animal/fisiologia , Neurônios Dopaminérgicos/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Masculino , Mesencéfalo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Optogenética , Técnicas de Patch-Clamp , Radiocirurgia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/fisiologia , Ácido gama-Aminobutírico/fisiologia
16.
J Neurosci ; 33(26): 10667-75, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804090

RESUMO

The embryonic sympathetic nervous system consists of predominantly noradrenergic neurons and a very small population of cholinergic neurons. Postnatal development further allows target-dependent switch of a subset of noradrenergic neurons into cholinergic phenotype. How embryonic cholinergic neurons are specified at the prenatal stages remains largely unknown. In this study, we found that the expression of transcription factor Tlx3 was progressively restricted to a small population of embryonic sympathetic neurons in mice. Immunostaining for vesicular acetylcholine transporter (VAChT) showed that Tlx3 was highly expressed in cholinergic neurons at the late embryonic stage E18.5. Deletion of Tlx3 resulted in the loss of Vacht expression at E18.5 but not E12.5. By contrast, Tlx3 was required for expression of the cholinergic peptide vasoactive intestinal polypeptide (VIP), and somatostatin (SOM) at both E12.5 and E18.5. Furthermore, we found that, at E18.5 these putative cholinergic neurons expressed glial cell line-derived neurotrophic factor family coreceptor Ret but not tyrosine hydroxylase (Ret(+)/TH(-)). Deletion of Tlx3 also resulted in disappearance of high-level Ret expression. Last, unlike Tlx3, Ret was required for the expression of VIP and SOM at E18.5 but not E12.5. Together, these results indicate that transcription factor Tlx3 is required for the acquisition of cholinergic phenotype at the late embryonic stage as well as the expression and maintenance of cholinergic peptides VIP and SOM throughout prenatal development of mouse sympathetic neurons.


Assuntos
Proteínas de Homeodomínio/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Contagem de Células , Feminino , Feto , Deleção de Genes , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mutação/fisiologia , Gravidez , Proteínas Proto-Oncogênicas c-ret/biossíntese , Proteínas Proto-Oncogênicas c-ret/genética , Somatostatina/genética , Somatostatina/fisiologia , Gânglio Estrelado/citologia , Gânglio Estrelado/crescimento & desenvolvimento , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/embriologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/fisiologia , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/fisiologia
17.
Arch Gerontol Geriatr ; 56(1): 68-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22738763

RESUMO

The purpose of this study was to elucidate the alteration of catecholamine metabolism and the contribution of catecholamines to the decline of learning and memory in the brain of the senescence-accelerated mouse prone 10 (SAMP10) with aging. Catecholamines and their metabolites in the cerebral cortex were measured by HPLC-ECD. The protein levels of tyrosine hydroxylase (TH) as well as TH phosphorylated at Ser19 or Ser40, dopamine-ß-hydroxylase (DßH), and cAMP-dependent protein kinase (PKA) were determined by western blot analysis. Dopamine (DA) and norepinephrine (NE) levels in SAMP10 were significantly lower than those in control animals. However, no significant difference was observed in catecholamine metabolite levels between SAMP10 and control mice. The level of TH phosphorylation at Ser40 in SAMP10 was significantly lower than that in control mice, but no significant difference was observed in the levels of TH, TH phosphorylated at Ser19, or DßH. The amount of PKA, which regulates the phosphorylation of TH at Ser40, was significantly lower in SAMP10 than in control mice. The present study demonstrated that a decline in DA and NE concentrations was observed in the cerebral cortex of SAMP10 with aging, and this decrease of catecholamine levels was caused by impairment of their synthetic pathway. These impairments are considered to be caused by downregulation of TH phosphorylation at Ser40 as a result of PKA deficiency. The present study suggests that the decline of learning and memory abilities of SAMP10 is caused by a decrease in catecholamine synthesis in the cerebral cortex with aging.


Assuntos
Envelhecimento/metabolismo , Córtex Cerebral/metabolismo , Dopamina/deficiência , Norepinefrina/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Córtex Cerebral/química , Córtex Cerebral/enzimologia , Córtex Cerebral/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dopamina/análise , Dopamina/biossíntese , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/fisiologia , Regulação para Baixo/fisiologia , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos , Norepinefrina/análise , Norepinefrina/biossíntese , Fosforilação/fisiologia , Tirosina 3-Mono-Oxigenase/fisiologia
18.
Stem Cells Transl Med ; 1(6): 492-502, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23197853

RESUMO

Human adult olfactory epithelial-derived neural progenitors (hONPs) can differentiate along several neural lineages in response to morphogenic signals in vitro. A previous study optimized the transfection paradigm for the differentiation of hONPs to dopaminergic neurons. This study engrafted cells modified by the most efficient transfection paradigm for dopaminergic neural restriction and pretransfected controls into a unilateral neurotoxin, 6-hydroxydopamine-induced parkinsonian rat model. Approximately 35% of the animals engrafted with hONPs had improved behavioral recovery as demonstrated by the amphetamine-induced rotation test, as well as a corner preference and cylinder paw preference, over a period of 24 weeks. The pre- and post-transfected groups produced equivalent responses, indicating that the toxic host environment supported hONP dopaminergic differentiation in situ. Human fibroblasts used as a cellular control did not diminish the parkinsonian rotational deficits at any point during the study. Increased numbers of tyrosine hydroxylase (TH)-positive cells were detected in the engrafted brains compared with the fibroblast-implanted and medium-only controls. Engrafted TH-positive hONPs were detected for a minimum of 6 months in vivo; they were multipolar, had long processes, and migrated beyond their initial injection sites. Higher dopamine levels were detected in the striatum of behaviorally improved animals than in equivalent regions of their nonrecovered counterparts. Throughout these experiments, no evidence of tumorigenicity was observed. These results support our hypothesis that human adult olfactory epithelial-derived progenitors represent a unique autologous cell type with promising potential for future use in a cell-based therapy for patients with Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Neurais/transplante , Mucosa Olfatória/citologia , Doença de Parkinson/terapia , Adulto , Anfetamina/farmacologia , Animais , Comportamento Animal , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Dopamina/fisiologia , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Fibroblastos/fisiologia , Fibroblastos/transplante , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Mucosa Olfatória/fisiologia , Oxidopamina/efeitos adversos , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção , Transplante Autólogo , Tirosina 3-Mono-Oxigenase/fisiologia
19.
Proc Natl Acad Sci U S A ; 109(50): 20726-31, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23185016

RESUMO

Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.


Assuntos
Córtex Pré-Frontal/fisiologia , Receptores de Dopamina D1/fisiologia , Animais , Sequência de Bases , Comportamento Animal/fisiologia , Relógios Biológicos/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Vias Neurais/fisiologia , Optogenética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Recompensa , Transdução de Sinais , Transmissão Sináptica , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/fisiologia , Área Tegmentar Ventral/fisiologia
20.
Metab Eng ; 14(6): 603-10, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22948011

RESUMO

The hydroxylation of tyrosine is an important reaction in the biosynthesis of many natural products. The use of bacteria for this reaction has not been very successful due to either the over-oxidation to ortho-quinone when using tyrosinases from bacteria or plants, or the lack of the native cofactor, tetrahydrobiopterin (BH4), needed for the activity of tyrosine hydroxylases (TH). Here, we demonstrate that an Escherichia coli cofactor, tetrahydromonapterin (MH4), can be used as an alternative cofactor for TH in presence of the BH4 regeneration pathway, and tyrosine hydroxylation is performed without over-oxidation. We used this platform for biosynthesis of one of the most powerful antioxidants, hydroxytyrosol. An endogenous aromatic aldehyde oxidase was identified and knocked out to prevent formation of the side product, and this resulted in nearly exclusive production of hydroxytyrosol in engineered E. coli. Finally, hydroxytyrosol production from a simple sugar as a sole carbon source was demonstrated.


Assuntos
Escherichia coli/fisiologia , Glucose/metabolismo , Álcool Feniletílico/análogos & derivados , Engenharia de Proteínas/métodos , Tirosina 3-Mono-Oxigenase/fisiologia , Tirosina/metabolismo , Animais , Clonagem Molecular , Camundongos , Oxirredução , Álcool Feniletílico/isolamento & purificação , Álcool Feniletílico/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...